Jump to content
TorGuard

Search the Community

Showing results for tags 'encryption pfsense'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • The Lounge
    • General Stuff
    • Member Tutorials
    • TorGuard Reviews
  • TorGuard Software Releases
    • Network Status
    • TorGuard Client Releases
    • Android Client Releases
    • iOS App Releases
    • Chrome Extension Releases
    • Firefox Extension Releases
  • TorGuard VPN Support
    • VPN Questions and General Support
    • VPN Windows Support
    • VPN Mac Support
    • VPN Linux Support
    • VPN Router Support
    • iOS VPN Support
    • Android VPN Support
  • TorGuard Proxy Support
    • Proxy Questions and General Support
    • Firefox Extension Support
    • Chrome Extension Support

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Found 2 results

  1. LAN Interface For GETDNS and STUBBY Plus UNBOUND WHY YOU ASK ? ANSWER : IN LIFE ONE SHOULD HAVE OPTIONS IMPORTANT UPDATED INFORMATION !!! - READ FULL GUIDE BEFORE GETTING STARTED !!! Stop pfSense Router from occasionally allowing UNBOUND Root Hints to resolve queries on its own. This configuration ensures that localhost ( 127.0.0.1 ) will not be used as a resolver on pfSense Box. You will only use GETDNS and STUBBY DNS SERVERS if you follow this tutorial. You will use your One Main LAN Interface as the listening interface for STUBBY and the listening and outgoing interface for your UNBOUND DNS RESOLVER on pfSense. So, let's get started. See Below For Definition and Function Of Unbound Root Hints : Unbound is a caching DNS resolver. It uses a built in list of authoritative nameservers for the root zone (.), the so called root hints. On receiving a DNS query it will ask the root nameservers for an answer and will in almost all cases receive a delegation to a top level domain (TLD) authoritative nameserver. Source Document : https://man.openbsd.org/unbound First you all know the drill by now - " The Intro " we would all have a better world if we remember to practice the concept that - NOW ! is the time for all of US ( A ) to GET UP & GET INVLOVED and act with SOUL POWER ! - lyrics to sing along : https://genius.com/James-brown-get-up-get-into-it-get-involved-lyrics plus https://genius.com/James-brown-soul-power-lyrics and video : https://www.youtube.com/watch?v=1pvIarW3xHg Bonus JB : https://www.youtube.com/watch?v=v8TvBPshngE - I noticed on https://www.freshports.org/dns/getdns/ that ever since getdns 1.5.2_1 - stubby is included in the package by default. PLEASE TAKE SPECIAL NOTE UNDER Commit History : - Update to 1.5.2 - Build with STUBBY by default due to popular demand This got me to thinking about how to install DNS Privacy DNS OVER TLS on pfSense ( Special Thanks and Kudos to Ryan Steinmetz aka zi - the port maintainer and developer getdns on FreeBSD ). This is an updated guide / tutorial which explains how to setup adding DNS-Over-TLS support for pfSense - Please disregard and do not use any guides and / or tutorials which pre-date this one which covers installation and configuration of DNS Privacy on pfSense FireWall. I run GetDns and Stubby forwarded to and integrated with Unbound. For those who wish to explore Stubby and GetDns - this method is the one recommended by DNSPRIVACY - see here : https://getdnsapi.net/ https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+Daemon+-+Stubby https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+Clients#DNSPrivacyClients-Unbound - please read this carefully - you will note that it indicates : Unbound As A DNS TLS Client Features:Unbound can be run as a local caching forwarder, configured to use SSL upstream, however it cannot yet authenticate upstreams, re-use TCP/TLS connections, be configured for Opportunistic mode or send several of the privacy related options (padding, ECS privacy) etc. Some users combine Unbound (as a caching proxy with other features such as DNS Blacklisting) and Stubby (as a fully featured TLS forwarder). I was asked by a still skeptical devotee of DOH " What makes this way better than just running the DNS-over-https-proxy ? My answer was : Read this and make your decisions and conclusions concerning DOH vs DOT . Here is the article below : https://www.netmeister.org/blog/doh-dot-dnssec.html Bottom Line Conclusion From Jan Schaumann - The Author of This Blog Entry : For that, my current preference is quite clearly DNS-over-TLS: I fear a bifurcation of DNS resolution by apps combined with the push for using public resolvers with DoH will lead to a more complex environment and threat model for many users. Short Synopsis of DOH: In other words , ( with DOH ) we gain the same protections as with DoT for our web applications, but leaves all other DNS traffic vulnerable. Subsequently, as a matter of fact and in practice with DNS OVER TLS ALL DNS traffic is invulnerable and protected.This is why I run DOT and eschew DOH on my OPNsense Router. Further, Personally, I run GETDNS STUBBY and UNBOUND as described here along with ( wait for it ) FireFox DOH along with Encrypted SNI - plus TLS v 1.3 in Stubby and naturally a properly configured and encrypted VPN - Your pfSense /etc/resolv.conf file before and after configuring LAN Interface For GETDNS and STUBBY Plus UNBOUND as described in this tutorial. Your pfSense Firewall # domain secureone.duckdns.org # Domain Used In My # OpenWRT DuckDNS LET’S ENCRYPT CERTIFICATES MADE SIMPLE Tutorial Before Below : cat /etc/resolv.conf nameserver 127.0.0.1 search secureone.duckdns.org After Below : cat /etc/resolv.conf nameserver 192.168.7.11 search secureone.duckdns.org These are the reasons I choose to use GetDns and Stubby with Unbound. Those reasons being so that I can take full advantage of all of the most secure privacy features available when running DNS OVER TLS. What I give you here is the absolute best method of implementation and deployment of DNS OVER TLS. For any and all who may be wondering why DNS OVER TLS is all the rage - read this: https://tenta.com/blog/post/2017/12/dns-over-tls-vs-dnscrypt I always set up DNS OVER TLS first before configuring OpenVPN and / or WireGuard on pfSense - this DNS solution works flawlessly with either VPN protocol. So here we go. 1 - There are four dependency packages required before actually installing the getdns package. Two are available in the pfSense package repositories and two from the FreeBSD repository. Lastly the getdns package itself is also in the FreeBSD repository. So to begin enter these commands below in the order : A # pkg install libuv B # pkg install libyaml - Go to https://pkg.freebsd.org/FreeBSD:11:amd64/latest/All/ as pfSense is based on FreeBSD 11 - C # pkg add https://pkg.freebsd.org/FreeBSD:11:amd64/latest/All/libev-4.24,1.txz D # pkg add https://pkg.freebsd.org/FreeBSD:11:amd64/latest/All/libidn-1.35.txz Lastly, install getdns along with stubby E # pkg add https://pkg.freebsd.org/FreeBSD:11:amd64/latest/All/getdns-1.5.2_4.txz GetDNS and Stubby are now installed on pfSense FireWall. In order to configure UNBOUND along with stubby ( and getdns ) follow the steps below. For pfSense 2.5.0 Development Snapshots which is based on FreeBSD 12 which includes openssl 1.1 with tls 1.3 support for Stubby get packages from pkg add https://pkg.freebsd.org/FreeBSD:12:amd64/latest/All/ links for the same packages listed above - always check for latest packages first or you might encounter download issues. 2 - Now Ryan Steinmetz aka zi - the port maintainer and developer of this port was kind enough to include a start up script ( stubby.in ) for this package. See the stubby.in here in the raw : https://svnweb.freebsd.org/ports/head/dns/getdns/files/stubby.in?view=markup. All I had to do was ask him and he did for any and all who elect to use this great piece of FreeBSD software. 3 - Now to put all of this together, The stubby.in file is located here - /usr/local/etc/rc.d/stubby by default. First though Stubby needs Unbound root.key - run this command before getting started: # su -m unbound -c /usr/local/sbin/unbound-anchor Then - A - Issue this command : # mv /usr/local/etc/rc.d/stubby /usr/local/etc/rc.d/stubby.sh Make it executable - I run two commands - it works for me: # chmod 744 /usr/local/etc/rc.d/stubby.sh # chmod a+x /usr/local/etc/rc.d/stubby.sh B - Yes must enable Stubby Daemon in the file - open file by : nano /usr/local/etc/rc.d/stubby.sh go to line 27 - : ${stubby_enable="NO"} change the setting to : ${stubby_enable="YES"} - that is all you have to do to this file. It comes pre-configured. Save and exit. 4 - You can and should also check real time status of DNS Privacy Servers as they are experimental and are not always stable - you can monitor DNS TLS Servers Real Time Status here below: https://dnsprivacy.org/jenkins/job/dnsprivacy-monitoring/ I have read here: https://www.monperrus.net/martin/randomization-encryption-dns-requests that Also, it is good to set up some servers that listens on port 443 and others on port 853, so as to be resilient if you are on a network with blocked ports. You can also blend IPv4 and IPv6 addresses. Now you must configure Stubby to resolve DNS OVER TLS - nano /usr/local/etc/stubby/stubby.yml VERY IMPORTANT UPDATE: After checking, rechecking and the triple checking on this website mentioned above : https://www.immuniweb.com/ssl/?id=Su8SeUQ4 I have made some very serious discoveries regarding which DNS Privacy Test Servers to use. The bottom line that I strongly suggest you only choose to deploy servers which support the TLSv1.3 protocol. See here for information and importance of TLSv1.3 : https://kinsta.com/blog/tls-1-3/ I will save you some considerable leg work and post below the best configuration for your stubby.yml file. Here it is: # All DNS Privacy Servers Below Tested and Updated On August 21 2020 With A+ Rating - # 100% Perfecto Configuration on website: https://www.immuniweb.com/ssl/?id=Su8SeUQ4n # These servers support the most recent and secure TLS protocol version of TLS 1.3 ** # Good configuration - These server configurations support only TLSv1.2 and TLSv1.3 protocols - current most secure encryption. # Also I have added the Country Locations of These DNS PRIVACY Servers using the Alpha 3 Code Format # see country code lists here : # https://www.nationsonline.org/oneworld/country_code_list.htm or https://www.iban.com/country-codes # Use as many or as few depending on your specific needs ## Go Into SSH shell and enter : # nano /usr/local/etc/stubby/stubby.yml resolution_type: GETDNS_RESOLUTION_STUB dns_transport_list: - GETDNS_TRANSPORT_TLS tls_authentication: GETDNS_AUTHENTICATION_REQUIRED dnssec_return_status: GETDNS_EXTENSION_TRUE tls_query_padding_blocksize: 128 edns_client_subnet_private : 1 idle_timeout: 9000 listen_addresses: - [email protected] ## Enter Your One Main LAN Address Here tls_connection_retries: 5 tls_backoff_time: 900 timeout: 2000 round_robin_upstreams: 1 tls_ca_path: "/etc/ssl/" upstream_recursive_servers: ### IPV4 Servers ### ### DNS Privacy DOT Test Servers ### ## 1 - The getdnsapi.net DNS TLS Server A+ ( NLD ) - address_data: 185.49.141.37 tls_auth_name: "getdnsapi.net" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: foxZRnIh9gZpWnl+zEiKa0EJ2rdCGroMWm02gaxSc9Q= ## 2 - The Surfnet/Sinodun DNS TLS Server #3 A+ ( NLD ) - address_data: 145.100.185.18 tls_port: 853 tls_auth_name: "dnsovertls3.sinodun.com" tls_pubkey_pinset: - digest: "sha256" value: 5SpFz7JEPzF71hditH1v2dBhSErPUMcLPJx1uk2svT8= ## 3 - The The Surfnet/Sinodun DNS TLS Server A ( NLD ) - address_data: 145.100.185.15 tls_auth_name: "dnsovertls.sinodun.com" tls_port: 443 tls_pubkey_pinset: - digest: "sha256" value: 62lKu9HsDVbyiPenApnc4sfmSYTHOVfFgL3pyB+cBL4= ## 4 - The The Surfnet/Sinodun DNS TLS Server #1 A ( NLD ) - address_data: 145.100.185.16 tls_auth_name: "dnsovertls1.sinodun.com" tls_port: 443 tls_pubkey_pinset: - digest: "sha256" value: cE2ecALeE5B+urJhDrJlVFmf38cJLAvqekONvjvpqUA= ## 5 - The dns.cmrg.net DNS TLS Server A+ ( CAN ) - address_data: 199.58.81.218 tls_auth_name: "dns.cmrg.net" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: 3IOHSS48KOc/zlkKGtI46a9TY9PPKDVGhE3W2ZS4JZo= ## 6 - The BlahDNS Japan DNS TLS Server A+ ( JPN ) - address_data: 45.32.55.94 tls_auth_name: "dot-jp.blahdns.com" tls_port: 443 tls_pubkey_pinset: - digest: "sha256" value: gIoiNFxX1Nw+7/pVsmUKBU941bMBYjEYuB2T9drULOM= ## 7 - The BlahDNS German DNS TLS Server A+ ( USA Hosted In DEU ) - address_data: 159.69.198.101 tls_auth_name: "dot-de.blahdns.com" tls_port: 443 tls_pubkey_pinset: - digest: "sha256" value: YZeyeJf/suAR2fMHLc9RDPkcQi/e8EEnzk5Y1N90QQE= ## 8 - The BlahDNS Finland DNS TLS Server A+ ( FIN ) - address_data: 95.216.212.177 tls_auth_name: "dot-fi.blahdns.com" tls_port: 443 tls_pubkey_pinset: - digest: "sha256" value: PID8ufrN/lfloA6y/C+mpR8MT53GG6GkAd8k+RmgTwc= ## 9 - The dns.neutopia.org DNS TLS Server A+ ( FRA ) - address_data: 89.234.186.112 tls_auth_name: "dns.neutopia.org" tls_port: 443 tls_pubkey_pinset: - digest: "sha256" value: wTeXHM8aczvhRSi0cv2qOXkXInoDU+2C+M8MpRyT3OI= ## 10 - The Foundation for Applied Privacy DNS TLS Server #1 A+ ( AUT ) - address_data: 94.130.106.88 tls_auth_name: "dot1.applied-privacy.net" tls_port: 443 tls_pubkey_pinset: - digest: "sha256" value: 78kfbZFJaxGrAl+0hkiyWER0ajTgFL/KxMAZQHSNhWU= ## 11 - The Foundation for Applied Privacy DNS TLS Server #2 A+ ( AUT ) - address_data: 93.177.65.183 tls_auth_name: "dot1.applied-privacy.net" tls_port: 443 tls_pubkey_pinset: - digest: "sha256" value: 78kfbZFJaxGrAl+0hkiyWER0ajTgFL/KxMAZQHSNhWU= ## 12 - The Secure DNS Project by PumpleX DNS TLS Server #1 A+ ( GBR ) - address_data: 51.38.83.141 tls_auth_name: "dns.oszx.co" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: Bt3fAHJeDPU2dneCx9Md6zTiKhzWtZ152To0j0f32Us= ## 13 - The Rubyfish Internet Tech DNS TLS Server A+ ( CHN ) - address_data: 115.159.131.230 tls_auth_name: "dns.rubyfish.cn" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: DBDigty3zDS7TN/zbQOmnjZ0qW+qbRVzlsDKSsTwSxo= ## 14 - The Lorraine Data Network DNS TLS Server A+ ( FRA ) - address_data: 80.67.188.188 tls_port: 443 tls_pubkey_pinset: - digest: "sha256" value: WaG0kHUS5N/ny0labz85HZg+v+f0b/UQ73IZjFep0nM= ## This certificate is currently expired which ## does not pose any concerns in SPKI mode ## (in practice with Stubby) ## Source : https://ldn-fai.net/serveur-dns-recursif-ouvert/ ## 15 - The DNSPRIVACY.at TLS Server #1 A+ ( DEU ) - address_data: 94.130.110.185 tls_auth_name: "ns1.dnsprivacy.at" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: Fr9YdIAIg7TXJLLHp0XbeWKBS2utev0stoEIb+7rZjM= ## 16 - The DNSPRIVACY.at TLS Server #2 A+ ( DEU ) - expired 2020-04-01 - address_data: 94.130.110.178 tls_auth_name: "ns2.dnsprivacy.at" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: 68MH4G5hipbK1xYATBFgA+/DNLDd333oXr22QyB/RRo= # 17 - The ibksturm.synology.me DNS TLS Server A+ ( CHE ) - address_data: 85.5.93.230 tls_auth_name: "ibksturm.synology.me" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: npNOnBcLbvZWZgdmcuFaEqYJbaGjBlHMf9DknDoIkgg= ## 18 - The dns.flatuslifir.is DNS TLS Server A+ ( ISL ) - address_data: 46.239.223.80 tls_auth_name: "dns.flatuslifir.is" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: OvqVajUX+2j/xfYqPZid2Z8DMX2Vex8geaYw0UG77BE= ### Publicly Available DOT Test Servers ### ## 19 - The ContainerPI.com - CPI DNS TLS Server A+ ( JPN ) - address_data: 45.77.180.10 tls_auth_name: "dns.containerpi.com" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: xz8kGlumwEGkPwJ3QV/XlHRKCVNo2Fae8bM5YqlyvFs= ## 20 - The FEROZ SALAM DNS TLS Server A+ ( GBR ) - address_data: 46.101.66.244 tls_auth_name: "doh.li" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: fiOT+xcarY8uz1UBZ0DzA+Gi5kcSHdBDrofcsZL3HGo= ## 21 - The Andrews & Arnold DNS TLS Server #1 A+ ( GBR ) - address_data: 217.169.20.23 tls_auth_name: "dns.aa.net.uk" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: BrjhBir4pbQ0+uTjlViVlc5qf1172WLQxDWevO/4bKI= ## 22 - The Andrews & Arnold DNS TLS Server #2 A+ ( GBR ) - address_data: 217.169.20.22 tls_auth_name: "dns.aa.net.uk" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: 1Mu+KSivSkoBfLiCzL+8xhg1YO7xmAjPJAJkjrv5ZvA= ## 23 - The dns.seby.io - Vultr DNS TLS Server A+ ( AUS ) - address_data: 45.76.113.31 tls_auth_name: "dot.seby.io" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: H13Su1659zEn0ZIblEShwjZO+M5gxKK2wXpVKQHgibM= ## 24 - The dns.seby.io - OVH DNS TLS Server A+ ( AUS ) - address_data: 139.99.222.72 tls_auth_name: "dot.seby.io" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: 8A/1KQQiN+aFWenQon076nAINhlZjGkB15C4E/qogGw= ## 25 - The Digitale Gesellschaft DNS TLS Server #1 A+ ( CHE ) - address_data: 185.95.218.43 tls_auth_name: "dns.digitale-gesellschaft.ch" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: OHdm30CP5hu1KI1bLnIokKL1eKbLNWQvN9bNsXb5TJQ= ## 26 - The Digitale Gesellschaft DNS TLS Server #2 A+ ( CHE ) - address_data: 185.95.218.42 tls_auth_name: "dns.digitale-gesellschaft.ch" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: W0CoacPgp4VP2zsOt2ERQuFqXTG37ud5t3ClB5Xh7dY= ## 27 - The Antoine Aflalo DNS TLS Server #1 A+ ( USA ) - address_data: 168.235.81.167 tls_auth_name: "dns-nyc.aaflalo.me" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: NZqlaEd1y4tc4z2s/GcclhKlOQtynBKtbomw1dVCydU= ## 28 - The Privacy-First DNS TLS Server #1 A+ ( JPN ) - address_data: 172.104.93.80 tls_auth_name: "jp.tiar.app" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: +Q7ZdLW0QXokd2OY/vUJm10ZAnm2KFC+ovJfm5++hDc= ## 29 - The Privacy-First DNS TLS Server #2 A+ ( SGP Hosted In USA ) - address_data: 174.138.29.175 tls_auth_name: "dot.tiar.app" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: +zKyo0IWR+e38Yw2KN7pMAkktQSjZUGN4h7BoYLytTk= ## 30 - The ibuki.cgnat.net DNS TLS Server A+ ( USA ) - address_data: 35.198.2.76 tls_auth_name: "ibuki.cgnat.net" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: gWjnc5JNaub1U83vNZtyY/7f1ZYH+Zwt+LWLeTzbLEU= ## 31 - The PI-DNS.COM West USA DNS TLS Server A+ ( USA ) - address_data: 45.67.219.208 tls_auth_name: "dot.westus.pi-dns.com" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: R9/K3atF+ZHuBAVREmFiTX5N0qse+JIqoMF+usZ2dZg= ## 32 - The PI-DNS.COM DNS TLS East USA Server A+ ( USA ) - address_data: 185.213.26.187 tls_auth_name: "dot.eastus.pi-dns.com" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: oZQKQh794UHpdtZc/7CG+9VUw+3uGIrQFfAhCvYcds4= ## 33 - The PI-DNS.COM Central Europe DNS TLS Server A+ ( DEU ) - address_data: 88.198.91.187 tls_auth_name: "dot.centraleu.pi-dns.com" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: ZdED9Ry+FfdsbpGVr2IxR/IB0D7FaVpSBWvsRWutrjg= ## 34 - The PI-DNS.COM North Europe DNS TLS Server A+ ( FIN ) - address_data: 95.216.181.228 tls_auth_name: "dot.northeu.pi-dns.com" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: xb6yo+7vmxFhyrA+NV1ZOKBGHuA03J4BjTwkWjZ3uZk= ## 35 - The PI-DNS.COM East Australia DNS TLS Server A+ ( AUS ) - address_data: 45.63.30.163 tls_auth_name: "dot.eastau.pi-dns.com" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: 0oVEbW/240sc4++zXjICyOO4XKTIEewY9zY5G5v9YnY= ## 36 - The PI-DNS.COM East Asia DNS TLS Server A+ ( USA ) - address_data: 66.42.33.135 tls_auth_name: "dot.eastas.pi-dns.com" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: 3dV7cgTZbmHD/JTfocBI6FvoyGevpZf2n5k2fG4uVr8= ## 37 - The Snopyta DNS TLS Server A+ ( FIN ) - address_data: 95.216.24.230 tls_auth_name: "fi.dot.dns.snopyta.org" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: cYf+8BXhzbBmQe6qP+BHzLb2UZ/rgOspuyCmk2aVhlE= ## 38 - The NixNet Uncensored Las Vegas DNS TLS Server A+ ( USA ) ## - or use ( tls_auth_name: "adblock.lv1.dns.nixnet.xyz" ) - address_data: 209.141.34.95 tls_auth_name: "uncensored.lv1.dns.nixnet.xyz" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: Ua+l/cIZ9dbJPExk4grit6qFZWmQZcoIoMBvMLwUDHc= ## 39 - The NixNet Uncensored New York DNS TLS Server A+ ( USA ) ## - or use ( tls_auth_name: "adblock.ny1.dns.nixnet.xyz" ) - address_data: 199.195.251.84 tls_auth_name: "uncensored.ny1.dns.nixnet.xyz" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: P8A1QEHTXs7QSmAuwR4FupMd3L/OW9TXbTXcFaazzoU= ## 40 - The NixNet Uncensored Luxembourg DNS TLS Server A+ ( LUX ) ## - or use ( tls_auth_name: "adblock.lux1.dns.nixnet.xyz" ) - address_data: 104.244.78.231 tls_auth_name: "uncensored.lux1.dns.nixnet.xyz" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: ncPZ5vhEPiv7VOf2nesJW9GYOGZ48MsAhzd4PO+3NJQ= ## 41 - The Lelux.fi DNS TLS Server A+ ( FRA Hosted In GBR ) - address_data: 51.158.147.50 tls_auth_name: "resolver-eu.lelux.fi" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: 8ZpLg8m7CE41EnXddCRJGsaWK2UVjy2UnhPo/7BsPIo= ## 42 - The Lightning Wire Labs DNS TLS Server A+ ( DEU ) - address_data: 81.3.27.54 tls_auth_name: "recursor01.dns.lightningwirelabs.com" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: 9QRO8JyJCVMU+KAO9acW5xfQnSXRuj1OqAz5aZHwH+4= ## 43 - The Hostux DNS TLS Server A+ ( LUX ) - address_data: 185.26.126.37 tls_auth_name: "dns.hostux.net" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: P0gaP31TQQzAIN3DomM5vXS3+8oCgYcTA/ZJ09Jw4QE= ## 44 - The dnsforge.de DNS TLS Server #1 A+ ( DEU ) - address_data: 176.9.1.117 tls_auth_name: "dnsforge.de" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: m51QwAhzNDSa3G7c1Y6eOEsskzp6ySzeOqy0LKcptDw= ## 45 - The dnsforge.de DNS TLS Server #2 A+ ( DEU ) - address_data: 176.9.93.198 tls_auth_name: "dnsforge.de" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: m51QwAhzNDSa3G7c1Y6eOEsskzp6ySzeOqy0LKcptDw= # 46 - The Freifunk München DNS TLS Server A+ ( DEU ) - address_data: 195.30.94.28 tls_auth_name: "doh.ffmuc.net" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: vAgfcoO9rzejY7Pdv9MK9DymLvYYJ4PF5V1QzReF4MU= # 47 - The doh.defaultroutes.de DNS TLS Server A+ ( DEU ) - address_data: 5.45.107.88 tls_auth_name: "doh.defaultroutes.de" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: p7t6DDebAlM1rwkrJgZJ6CDkuJG0Ff5PKYZ8bUPQCM0= ## 48 - The CIRA Canadian Shield DNS TLS Servers A+ ( CAN ) - address_data: 149.112.121.10 tls_auth_name: "private.canadianshield.cira.ca" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: sXmZXPsnkbQMw68THpV0Tgh9zCe12TtXIinSTf7lkkw= - address_data: 149.112.122.10 tls_auth_name: "private.canadianshield.cira.ca" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: sXmZXPsnkbQMw68THpV0Tgh9zCe12TtXIinSTf7lkkw= # 49 - The dns.dnshome.de DNS TLS Server #1 A+ ( DEU ) - address_data: 185.233.106.232 tls_auth_name: "dns.dnshome.de" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: q5AkxgnWVCVjCUNUKl3aIBpGTfXF5GahE0RcncwbZoc= - address_data: 185.233.107.4 tls_auth_name: "dns.dnshome.de" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: q5AkxgnWVCVjCUNUKl3aIBpGTfXF5GahE0RcncwbZoc= ## 50 - The Usable Privacy DNS TLS Server A+ ( DEU / AUT ) - address_data: 149.154.153.153 tls_auth_name: "adfree.usableprivacy.net" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: wnJgPKtu/QHXHx3QZ7mZuIsNMv85buI5jsdsS9cTU5w= ## 51 - The DeCloudUs DNS TLS Server A+ ( DEU ) - address_data: 176.9.199.152 tls_auth_name: "dot.decloudus.com" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: +rBZZHFEVTmFwA8RuR9I5vdPqqaBSighP7rcoWgY9MI= ## 52 - The Arapurayil DNS TLS Server A+ ( AUS ) - address_data: 3.7.156.128 tls_auth_name: "dns.arapurayil.com" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: c3S8JssMSrXuMjDfjwzXHoO4RQckTYTTeUThdW+meo0= ## 53 - The Hurricane Electric DNS TLS Server A+ ( USA ) - address_data: 74.82.42.42 tls_auth_name: "ordns.he.net" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: G9pQNrYB98Wll0AmBF/GsMMn6gaDbXDnInV1je1MaPo= ## 54 - The Stéphane Bortzmeyer DNS TLS Server A+ ( FRA ) - address_data: 193.70.85.11 tls_auth_name: "dot.bortzmeyer.fr" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: eHAFsxc9HJW8QlJB6kDlR0tkTwD97X/TXYc1AzFkTFY= ### Anycast Publicly Available DOT Test Servers ### ## 55 - The NixNet Uncensored Anycast DNS TLS Servers ( Anycast ) - address_data: 198.251.90.114 tls_auth_name: "uncensored.any.dns.nixnet.xyz" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: Ryhjf7K6V9/Fw/7XU7fqzrVJVEOyPtlHR/rFetOXrug= - address_data: 198.251.90.89 tls_auth_name: "adblock.any.dns.nixnet.xyz" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: Ryhjf7K6V9/Fw/7XU7fqzrVJVEOyPtlHR/rFetOXrug= ## 56 - The DNSlify DNS TLS Servers A+ ( Anycast ) - address_data: 185.235.81.1 tls_auth_name: "doh.dnslify.com" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: w5AEEaNvoBOl4+QeDIuRaaL6ku+nZfrhZdB2f0lSITM= - address_data: 185.235.81.2 tls_auth_name: "doh.dnslify.com" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: w5AEEaNvoBOl4+QeDIuRaaL6ku+nZfrhZdB2f0lSITM= ### DNS Privacy Anycast DOT Public Resolvers ### ## 57 - The DNS.SB DNS TLS Servers A+ ( Anycast ) - address_data: 185.222.222.222 tls_auth_name: "dns.sb" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: /qCm+kZoAyouNBtgd1MPMS/cwpN4KLr60bAtajPLt0k= - address_data: 185.184.222.222 tls_auth_name: "dns.sb" tls_port: 853 tls_pubkey_pinset: - digest: "sha256" value: /qCm+kZoAyouNBtgd1MPMS/cwpN4KLr60bAtajPLt0k= ## 58 - The Comss.one DNS TLS Server #1 A+ ( CHN ) - address_data: 92.38.152.163 tls_port: 853 tls_auth_name: "dns.comss.one" tls_pubkey_pinset: - digest: "sha256" value: biGOXwJ1zClsvIfsjqV1FOdRq1jZdw5Sy61AqrlgKj4= ## 59 - The Comss.one DNS TLS Server #2 A+ ( CHN ) - address_data: 93.115.24.205 tls_port: 853 tls_auth_name: "dns.comss.one" tls_pubkey_pinset: - digest: "sha256" value: biGOXwJ1zClsvIfsjqV1FOdRq1jZdw5Sy61AqrlgKj4= ## 60 - The Comss.one DNS TLS Server #3 A+ ( CHN ) - address_data: 93.115.24.204 tls_port: 853 tls_auth_name: "dns.comss.one" tls_pubkey_pinset: - digest: "sha256" value: biGOXwJ1zClsvIfsjqV1FOdRq1jZdw5Sy61AqrlgKj4= Starting with pfSense 2.5.0 Snapshots in order for TLSv1.3 protocol to work properly ( read at all ) in your Stubby instance, OpenSSL 1.1.1 must be active and configured in the kernel. pfSense 2.5.0 and above does provide OpenSSL 1.1.1 support. When you have OpenSSL 1.1.1 with TLSv1.3 support simply add the section above in order to set Stubby to implement TLS1.3. The operative lines necessary are these two specifically found at the bottom of the stubby.yml file above: tls_ciphersuites: "TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256" tls_max_version: GETDNS_TLS1_3 See below for TLS1.3 Support Check SSH Commands - openssl s_client -connect 46.101.66.244:853 OR : openssl s_client -connect 45.32.55.94:443 Read Out Will Be Verified By These Lines Below: Post-Handshake New Session Ticket arrived: SSL-Session: Protocol : TLSv1.3 Cipher : TLS_CHACHA20_POLY1305_SHA256 OR : Post-Handshake New Session Ticket arrived: SSL-Session: Protocol : TLSv1.3 Cipher : TLS_AES_256_GCM_SHA384 Depending on Configuration on Tested DOT Server Lastly, you can and should take advantage of this new DNS OVER TLS provider. You need to sign up and use configured settings in order to use it. NextDNS is a free service - ANYCAST and pretty much cutting edge. ANYCAST speeds up your DNS - Here it is: NextDNS https://my.nextdns.io/signup or feel free to use and test NextDNS " Try it now for free " Feature go to : https://nextdns.io/ I also strongly encourage you to subscribe to blockerDNS found here : https://blockerdns.com/ This new DOH / DNS OVER TLS provider is the fastest I have run across. blockerDNS is run by Tambe Barsbay a seasoned, thorough and extremely proficient tech practitioner. blockerDNS is based in the U.S. and its infrastructure is hosted on Google Cloud Platform and DigitalOcean. You can view blockerDNS subscription options here : https://blockerdns.com/tryit - Most significantly, Tambe stands by his claim that he offers " Instant support by phone or email ". Overall blockerDNS is a great DNSPRIVACY DNS Service. Tip : The Mobile $0.99 per month option should suffice for most home users. Links : https://tambeb.com/ https://blockerdns.com/blog https://blockerdns.com/support https://blockerdns.com/overview 6- Now you must configure your Unbound DNS Server to use Stubby for DNS Over TLS. Go To Services > DNS Resolver > GENERAL SETTINGS UNDER DNS Resolver > GENERAL SETTINGS Network Interfaces = Select LAN ONLY ! # IF You Have Multiple Lan Interfaces - Select ALL LAN INTERFACES Under Custom options enter the following : server: forward-zone: name: "." # Allow all DNS queries forward-addr: [email protected] ## ( Your One Main LAN Address ) ## END OF ENTRY ## Note : do-not-query-localhost: no ## this entry is necessarily removed ## from this UNBOUND configuration ## Disabling DNS Queries From Localhost ( 127.0.0.1 ) Outgoing Network Interfaces = Select LAN ONLY ! # IF You Have Multiple Lan Interfaces - Select ALL LAN INTERFACES Make Sure to NOT CHECK - DO NOT CHECK - the box for DNS Query Forwarding. Save and Apply Settings Next -Under System > General Setup > DNS Server Settings Set the first DNS Server to Your One Main LAN Address ( 192.168.7.11 ) with no gateway selected / Make sure that DNS server option A - Allow DNS server list to be overridden by DHCP/PPP on WAN - Is Not I repeat - Is Not Checked ! and DNS server option B - Disable DNS Forwarder Is Checked - I repeat - Is Checked ! - Save and Apply Settings All of these name servers listed above DO NOT log ! repeat DO NOT log ! your DNS queries. In full disclosure some name servers claim to log traffic volume only. See here for details : https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+Test+Servers and look under " Logging " column. C'est Fini C'est Ci Bon C'est Magnifique Reboot your router just to sure. Lastly, you can check your DNS at GRC DNS Nameserver Spoofability Test - DNSLeak.com - or any such service. Your results will render the DNS PRIVACY Name Servers which you selected in your stubby.yml configuration file. You are now running DNS OVER TLS with GETDNS plus STUBBY ( a fully featured TLS forwarder ) along with an Unbound DNS Caching Server. Note: Starting with Unbound 1.7.2 qname minimisation is enabled by default. However, I still add these settings manually. These settings are entered under Unbound " Custom Options": qname-minimisation: yes qname-minimisation-strict: yes harden-below-nxdomain: yes Use either or both of these two methods to verify QNAME Minimisation A - Run command : drill txt qnamemintest.internet.nl and / or B - Run command: dig txt qnamemintest.internet.nl +short and / or dig -t txt qnamemintest.internet.nl ( for more complete readout including DNSSEC results ). AD = Authenticated Data (for DNSSEC only; indicates that the data was authenticated) The results in any of these scenarios will show either: "HOORAY - QNAME minimisation is enabled on your resolver :)!” or “NO - QNAME minimisation is NOT enabled on your resolver :(.” Reference https://discourse.pi-hole.net/t/unbound-and-qname-minimisation/10038/4 You will and should get HOORAY ! - if you used the name servers listed in this guide for your Stubby configuration. VERY IMPORTANT TIP: Please note that right at the top of the main DNS Privacy Test Servers Homepage ( https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+Test+Servers ) It Ominously Declares: DoT servers The following servers are experimental DNS-over-TLS servers. Note that they are experimental offerings (mainly by individuals/small organisations) with no guarantees on the lifetime of the service, service level provided. The level of logging may also vary (see the individual websites where available) - the information here about logging has not been verified. Also note that the single SPKI pins published here for many of these servers are subject to change (e.g on Certificate renewal) and should be used with care!! For these reasons it is most important to check and verify your SPKI pin(s) for TLS authentication manually yourself from time to time. There are sure fire methods to make sure that you are using the correct value for any upstream nameserver ( aka tls_pubkey_pinset value ) - Go to https://blahdns.com/ and scroll down to the section to the yellow section entitled What is DNS OVER TLS click on it and it will open up. When you do it will state some general information, but what you want to pay attention to is this section: How to get SPKI Most Simple and Direct Method: gnutls-cli --print-cert -p 853 159.69.198.101 | grep "pin-sha256" | head -1 And / Or With Adjustment For SSL Port and Address Being Tested gnutls-cli --print-cert -p 443 159.69.198.101 | grep "pin-sha256" | head -1 - where you must pkg install gnutls OR echo | openssl s_client -connect '185.49.141.37:853' 2>/dev/null | openssl x509 -pubkey -noout | openssl pkey -pubin -outform der | openssl dgst -sha256 -binary | openssl enc -base64 Remember to change port to 443 or port for IPV6 if different than standard 853 where applicable. https://www.dnsleaktest.com/ https://www.perfect-privacy.com/dns-leaktest https://cryptoip.info/dns-leak-test https://www.grc.com/dns/dns.htm https://www.vpninsights.com/dns-leak-test and last but not least https://cmdns.dev.dns-oarc.net/ for a thorough in depth DNS Test https://bash.ws/dnsleak/test/ Now all you need to do is run is a properly configured VPN Service. By doing so, running DNS over TLS with Stubby and GetDns will keep your VPN provider from spying on your encrypted DNS look ups - and also your DNS providers both the ISP ( replaced by encrypted Stubby ) and your Encrypted TLS DNS Service Provider will see your IP as the one from your encrypted tunneled VPN provider. I am convinced this setup is the right strategy for both security and privacy. I think it to be the best practice for all those most serious about multi-layered cyber security.
  2. tg_user

    Pfsense Encryption modes

    Hi Guys, I'm using Pfsense latest version with my TorGuard VPN and I was wondering if there are any better settings to use currently I'm using Encryption algorithm: BF-CBC 128Bit Auth Digest Algorithm: SHA160 Bit Which seems a bit "weak" for me especially the SHA1 however I could not find any info on what modes I can use ? Any help or info appreciated Thanks
×
×
  • Create New...